Antinociceptive effect of calcitonin gene-related peptide in the central nucleus of amygdala: activating opioid receptors through amygdala-periaqueductal gray pathway.

نویسندگان

  • W Xu
  • T Lundeberg
  • Y T Wang
  • Y Li
  • L-C Yu
چکیده

The central nucleus of amygdala (CeA) plays an important role in pain regulation. Calcitonin gene-related peptide (CGRP)-like immunoreactive fibers and CGRP receptors are distributed densely in CeA. The present study was performed to elucidate the role of CGRP in nociceptive regulation in the CeA of rats. Intra-CeA injection of CGRP induced dose-dependent increases in the hind-paw withdrawal latency tested by hotplate test and Randall Selitto Test, indicating an antinociceptive effect of CGRP in CeA. Furthermore, the antinociceptive effect of CGRP was blocked by intra-CeA administration of the CGRP receptor antagonist CGRP8-37, suggesting that CGRP receptor1 is involved in the CGRP-induced antinociception. The CGRP-induced antinociception was attenuated by s.c. injection of the opioid antagonist naloxone, suggesting an involvement of endogenous opioid systems in CGRP-induced antinociception. Moreover, it was demonstrated that opioid receptors in the periaqueductal gray, but not in CeA, contributed to the CGRP-induced antinociception, indicating the importance of the pathway between CeA and the periaqueductal gray in CGRP-induced antinociception. Combining retrograde fluorescent tracing with immunohistochemistry, we found that met-enkephalinergic neurons were innervated by CGRP-containing terminals in CeA. Furthermore, most neurons in the CeA retrogradely traced from the periaqueductal gray were contacted by CGRP-containing terminals and some of them were surrounded by characteristic basket-like structures formed by the terminals, suggesting that CGRP innervates the neurons which project from CeA to the periaqueductal gray. The results indicate that CGRP activates the met-enkephalinergic neurons, which project from CeA to the periaqueductal gray, producing antinociceptive effect in rats.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plastic changes of calcitonin gene-related peptide in morphine tolerance: behavioral and immunohistochemical study in rats.

The present study was undertaken to investigate the plasticity of calcitonin gene-related peptide (CGRP) in antinociception after morphine tolerance in rats. The hindpaw withdrawal latencies (HWLs) to both thermal and mechanical stimulation increased significantly after intracerebroventricular injection of 2.5 nmol of CGRP in opioid-naive rats, indicating that CGRP produces an antinociceptive e...

متن کامل

Opioid Receptors of the Central Amygdala and Morphine-Induced Antinociception

The amygdala is a forebrain region, which is known as a modulator of pain sensation. The amygdala, particularly the central nucleus, has high concentrations of enkephalins relative to dynorphins and has high concentrations of opioid receptors. We here studied the role of central nuclei of amygdala in morphine antinociception. Methods: In this study, we used 130 male Wistar rats (200- 250g). Bil...

متن کامل

Glutamate Receptors in Nucleus Accumbens Can Modulate Canabinoid-Induced Antinociception in Rat’s Basolateral Amygdala

Introduction: It has been shown that administration of WIN55,212-2, a cannabinoid receptor agonist, into the basolateral amygdala (BLA), dose-dependently increases the thermal latency to withdrawal in the tail-.ick test and decreases pain related behaviors in both phases of the formalin test. Recent human and animal imaging data suggest that the nucleus accumbens (NAc) is an important neural su...

متن کامل

Antinociception produced by mu opioid receptor activation in the amygdala is partly dependent on activation of mu opioid and neurotensin receptors in the ventral periaqueductal gray.

Exposure to stressful or fear-inducing environmental stimuli activates descending antinociceptive systems resulting in a decreased pain response to peripheral noxious stimuli. Stimulating mu opioid receptors in the basolateral nucleus of the amygdala (BLA) in anesthetized rats produces antinociception that is similar to environmentally induced antinociception in awake rats. Recent evidence sugg...

متن کامل

Antinociception following application of DAMGO to the basolateral amygdala results from a direct interaction of DAMGO with Mu opioid receptors in the amygdala.

Previous studies from our laboratory have shown that application of the mu opioid agonist DAMGO into the basolateral region of the amygdala (BLA) suppresses the radiant heat tail flick (TF) reflex in anesthetized rats. This antinociceptive effect can be blocked by lesions of brainstem regions such as the periaqueductal gray (PAG) or the rostral ventromedial medulla (RVM) or by functional inacti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience

دوره 118 4  شماره 

صفحات  -

تاریخ انتشار 2003